RADAR WORKSHOP

Presented by Dr. Prasad Gogineni CReSIS <u>www.cresis.ku.edu</u>

3/12/2012

RADAR WORKSHOP Introduction to Radars

Topics

- EM Spectrum
- Plane Waves
 - Attenuation
 Characteristics
- Radar Equation
 - Point target
 - Plane Reflector
 - Distributed target

- Examples
- Pulse compression
 - Principle
 - Range sidelobes
 - Solutions
 - SAR
 - Principle
 - Range equation

Radars

EM Spectrum

Sounders/imagers • 1-1000 MHz

- Temperate ice - LF and HF
- Ice sheets
 - HF, VHF and UHF
- Microwave region
 - 300 MHz 30 GHz
 - Internal layers
 - Snow cover sea ice.
- Millimeter wave
 - 30 GHz 300 GHz.
 - Internal layers
- IEEE uses a different definition
 - 300 MHz 100 GHz

Radars for Glaciological Applications

An essential tool in glaciology Ice thickness Internal layers Structure KellDS 2011 relative power [dB] 21-Mar-2011 Surface roughness 13-30-19 to 13-36, 19 Bed conditions 3-D topography Advantages Wide-area coverage Airborne platforms Depth, e, = 3.15 [m] 1000 **Fstablished** Disadvantages 1500 Data are difficult to interpret Coarse resolution except for SAR] 2000 Pulse radar Impulse radars 2500 ICE BED FM-CW radars Step-frequency radars 0.00 km 12114 16.18 km 24,243,0 78.004 N 45.574 W 78.545 N Lathuda 78.536 H 78,453 H 45,347 W

CReSIS and CiC

03/12/2012

Radar Principles

Radar Principle

- Radar measures distance by measuring time delay between the transmit and received pulse.
- Measured time delay is converted to ice thickness.
- In freespace
 - 1 us = 150 m
 - 1 ns = 15 cm

$$\partial t = \tau_{2-}\tau_1 = \frac{2R_2}{c}\frac{2R_1}{c}$$

 $h = \partial t vp$

where v_p = velocity of propagation in ice.

EM Theory

Consider a plane
 wave in a
 dielectric

•
$$E(z) = E_0 e^{-\gamma z}$$

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\varepsilon} = j\omega\sqrt{\mu_0\varepsilon'\left(1 - j\frac{\varepsilon'}{\varepsilon'}\right)}$$
$$\approx j\omega\sqrt{\mu_0\varepsilon'}\left(1 - j\frac{\varepsilon''}{2\varepsilon'}\right)$$
$$\beta \approx \omega\sqrt{\mu_0\varepsilon'}$$
$$\alpha \approx \omega\sqrt{\mu_0\varepsilon'}\frac{\varepsilon''}{2\varepsilon'} = \frac{\pi}{\lambda}\frac{\varepsilon^{11}}{\sqrt{\varepsilon^1}}$$

Imaginary part of the dielectric constant adapted from Fujita et al., [2000]

CReSIS and CiC

Radar

- Block diagram of a simple pulse radar
 - It consists of a transmitter to generate a pulse-modulated carrier signal.
 - A receiver to amplify and filter the received signal.
 - A Dupluxer that enables same antenna to be used for transmission and reception.
 - Signal processor.
 - Display unit PPI, Bscope etc.

ICE SURFACE

MAA

ICE BED

Radar—Principle

3/12/2012

Radar Cross-Section

- Radar cross section characterizes the size of the object as seen by the radar.
- Where?
 - $E_s = scattering field$
 - E_i = incident field

Planar Reflector

CReSIS and CiC

Radar Equation

- A distributed target contains many scattering centers within the illuminated area.
- It is characterized by radar cross section per unit area, which is referred to as scattering coefficient.

Radar Equation

$$P_r = \frac{P_T G_T^2 \lambda^2 \sigma^0}{(4\pi)^3 R^4} \frac{\pi R \beta_e R \beta_a}{4}$$
$$P_r = \frac{P_T G_T^2 \lambda^2 \sigma^0}{(4\pi)^2 R^2} \frac{\beta_e \beta_a}{16}$$

For a distributed target and coherent reflector, power received falls off as 1/R²

For a point target power received falls off as 1/R⁴

For a distributed target with SAR processing power can fall-off as 1/R^{2.5} or 1/R³

Radar Equations for Ice

• Planar Reflector

$$P_{r} = \frac{P_{T}G_{T}A_{e}(1-|\Gamma_{as}|^{2})\Gamma_{b}|^{2}}{4\pi(2h)^{2}L_{is}}$$

$$\left(\frac{S}{N}\right)_{1} = \frac{P_{r}}{P_{n}} = \frac{P_{T}G_{T}A_{e}(1-|\Gamma_{as}|^{2})\Gamma_{b}|^{2}}{4\pi(2h)^{2}L_{is}kTBF}$$
For a cohere madar with pulse compressio

$$\left(\frac{S}{N}\right)_{M} = \frac{P_{T}G_{T}A_{e}(1-|\Gamma_{as}|^{2})\Gamma_{b}|^{2}C_{g}M}{4\pi(2h)^{2}L_{is}kTBF}$$

 Distributed target with SAR processing

$$\frac{S}{N_{M}} = \frac{P_{r}}{P_{n}} = \frac{P_{T}G_{T}A_{e}\sigma^{\circ}\pi h\beta_{e}\sqrt{c\tau_{pc}h}\tau_{pu}M}{2(4\pi)^{2}h^{4}L_{is}kTF}$$

$$\frac{S}{N_{M}} = \frac{P_{r}}{P_{n}} = \frac{MP_{T}G_{T}A_{e}\sigma^{o}\beta_{e}\sqrt{c\tau_{pc}}\tau_{pu}}{32\pi h^{2.5}L_{is}kTF}$$

3/12/2012

CReSIS and CiC

Antennas

- Antennas are used to couple electromagnetic waves into free space or capture electromagnetic waves from free space.
- Type of antennas
 - Wire
 - Dipole
 - Loop antenna
 - Aperture
 - Parabolic dish
 - Horn

Antennas

- Antennas are characterized by their:
 - Directivity
 - It is the ratio of maximum radiated power to that radiated by an isotropic antenna.
 - Efficiency
 - Efficiency defines how much of the power is the total power radiated by the antenna to that delivered to the antenna.
 - Gain
 - It is the product of efficiency and directivity
 - Beamwidth
 - Width of the main lobe at 3-dB points.

Antenna gain

Aperture-Type	Bearnwidth (From Aperture)	Directive gain (From Aperture)	Directive gain (From Beamwidth)	Antenna Efficiency (Aperture Illumination Efficiency)	
Uniformly illuminated circular aperture- hypothetical parabola	$\theta = \frac{58\lambda}{a}$	$g_4 = \frac{15 a^2}{\lambda^2}$	$g_d = \frac{52,525}{\theta^2}$		
(a → 18 dB șide-lobe level	$\theta=\theta_1=\theta_2$	$g_d = \frac{9.87 \ a^2}{\lambda^2}$	$\theta = \theta_1 = \theta_2$	100%	
Uniformly illuminated rectangular aperture or linear array a b 13 dB side-lobe level	$\theta_1 = \frac{51\lambda}{a}$ $\theta_2 = \frac{51\lambda}{b}$	$g_d = \frac{1.6ab}{\lambda^2}$	$g_{d} = \frac{41,253}{\theta_1 \theta_2}$	100%	
Rectangular horn					
a) Polarization plane: E-plane					
a _e y	$\theta_1 = \frac{56\lambda}{a_E}$				
13 dB side-lobe level		$a_{\rm H} = \frac{7.5 a_{\rm E} a_{\rm H}}{1000 {\rm m}^2}$	$a_{1} = \frac{31,000}{31,000}$	600	
 b) Orthogonal polarization plane: H-plane 		ga \	$\Theta_0 = -\theta_1 \theta_2$	00%	
- a _{tt} -	$\theta_2 = \frac{67\lambda}{a_H}$			-	
26 dB side-lobe level	-1				
Nonuniformly illuminated circular aperture (10 dB taper)-normal parabola	$\theta = \frac{72\lambda}{a}$	5 a ^z	$g_d = \frac{27,000}{\theta^2}$		
(a)	$\theta=\theta_1=\theta_2$	$g_d = \frac{1}{\lambda^2}$	$\theta = \theta_1 = \theta_2$	50%	
26 dB side-lobe level					
	a >>λ	$G_d \approx 10 \log_{10} g_d dB$	$G_d = 10 \log_{10} g_d \ dB$		

WJ Tech Notes 1976 10

Antennas

- An array of antennas is used whenever higher directivity is needed.
- Directivity is related to number of elements.
- Can be used for electronic scanning.
 - Most of the SAR antennas are arrays.

Antenna Array

 Let us consider simple array consisting of isotropic radiators.

DC-8 and P-3B Antenna Configurations

MCoRDS, Accumulation, Snow, and Ku-band radars

Example S/N ratio

See notes

′1 <u>2/2012</u>		$\left(\frac{S}{N}\right)_{M} =$	$\frac{P_T G_T G_r}{(4\pi)}$	$\frac{1- \Gamma_{as} ^2}{(2h)^2 L kT}$	$\frac{\partial^2 \lambda^2 C_g M}{\partial BF}$				
	Signal-to-noise ratio				2 2			13.99	
14	KTBF						-96.20	dBm	
13	Bandwidth			3000000.00	Hz	74.77			
12	Noise figure			2.00		3.01			
11	Temperature			290.00	К	24.62			
10	Boltzmann constant			0.00		-228.60			
	Signal processing gain						51.76		
9	Coherent integration gain			1000		30.00	dB		
10	Pulse compression gain			150.00		21.76	dB		
9	Received power						-133.96		dB
8	Spreading loss			0.00		-98.89	dB	dBm^2	
7				20.00	dB/km	60.00	dB		
6	5 Wavelength 6 Pad reflection loss			1.54		-20.00	dB		
4	Surface reflection loss			0.97		-0.26	ав		
3	3 Receive antenna gain			118.08		20.72	dR		
2	Transmit antenna gain			118.08		20.72	dB		
1	. Transmit power			500.00	W	71.44	dBm		

Modern Radar

